Inorg. Chem. **2007**, 46, 9575−9583

Magnetic and Electronic Properties of CaCu₃Cr₄O₁₂ and CaCu₃Cr₂Sb₂O₁₂ by First-Principles Density Functional Calculation

H. P. Xiang,†,‡ X. J. Liu,† E. J. Zhao,†,‡ J. Meng,† and Z. J. Wu*,†

Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China, Graduate School, Chinese Academy of Sciences, Beijing 100049, P.R. China

Received February 5, 2007

The electronic and magnetic properties of $CaCu₃Cr₄O₁₂$ and $CaCu₃Cr₂Sb₂O₁₂$ are investigated by the use of the full-potential linearized augumented plane wave (FPLAPW) method. The calculated results indicate that CaCu₃- Cr_4O_{12} is a ferrimagnetic and half-metallic compound, in good agreement with previous theoretical studies. CaCu₃- $Cr_2Sb_2O_{12}$ is a ferrimagnetic semiconductor with a small gap of 0.136 eV. In both compounds, because Cr^{4+} 3d (d2) and Cr3⁺ 3d (d3) orbitals are less than half filled, the coupling between Cr−Cu is antiferromagnetic, whereas that between Cu−Cu and Cr−Cr is ferromagnetic. The total net spin moment is 5.0 and 3.0 µB for CaCu₃Cr₄O₁₂ and CaCu₃Cr₂Sb₂O₁₂, respectively. In CaCu₃Cr₄O₁₂, the 3d electrons of Cr⁴⁺ are delocalized, which strengthens the Cr−Cr ferromagnetic coupling. For CaCu₃Cr₂Sb₂O₁₂, the doping of nonmagnetic ion Sb⁵⁺ reduces the Cr−Cr ferromagnetic coupling, and the half-filled $Cr^{3+}t_{2q}$ (t_{2q}^3) makes the chromium 3d electrons localized. In addition, the ordering arrangement of the octahedral chromium and antimony ions also prevents the delocalization of electrons. Hence, $CaCu₃Cr₂Sb₂O₁₂$ shows insulating behavior, in agreement with the experimental observation.

I. Introduction

In the ideal perovskite $ABO₃$, where the octahedra are not tilted, the structure is cubic, with coordination numbers of 12 and 6 for A and B cations, respectively. Nonetheless, significant deviation from the ideal stoichiometry and structure frequently occurs. The tilting of the $BO₆$ octahedra, where some or all of the $B-O-B$ angles are bent away from 180°, is the major distortion in perovskite compounds. To accommodate the tilting, the coordination number of threequarters of the A cations will be decreased from 12 to 4, by forming a square-planar coordination. This gives the $AA'_{3}B_{4}O_{12}$ structure. It is cubic, with coordination numbers of 12, 6, and 4 for A, B, and A′, respectively. In recent years, the complex perovskite compound $AA'_{3}B_{4}O_{12}$ has attracted a great deal of attention in both experimental and theoretical studies as a result of their interesting and unexpected properties. For instance, the hybrid cupromanganite CaCu₃- Mn_4O_{12} shows a quite-large magnetoresistance (up to several tens of percent) at a relatively low magnetic field over a wide temperature range.¹ The complex perovskite $CaCu₃$ -

 $Ti₄O₁₂$ has been reported as having the largest dielectric constant ($E' = 10⁵$) over a wide temperature range (from 100 to 600 K) ever measured.²⁻⁴ In addition, it is interesting to find the valence degeneracy between copper and ruthenium in CaCu₃Ru₄O₁₂ due to the broadening of ruthenium 4d band.⁵ On the other hand, to improve the properties of $AA'_{3}B_{4}O_{12}$, B can be replaced by 50% B', resulting in a new perovskite $AA'_{3}B_{2}B'_{2}O_{12}^{6-9}$ It is well-known that the properties of $A_2BB'O_6$ or $AA'BB'O_6$ perovskites are very sensitive to the properties (i.e., size, electronegativity, and electronic configuration) of B and/or B′ cations and their

- (1) Zeng, Z.; Greenblatt, M.; Subramanian, M. A.; Croft, M. *Phys. Re*V*. Lett.* **1999**, *82*, 3164.
- (2) Subramanian, M.; Li, D.; Reisner, B.; Sleight, A. *J. Solid State Chem.* **2000**, *151*, 323.
- (3) Ramirez, A. P.; Subramanian, M. A.; Gardel, M.; Blumberg, G.; Li, D.; Vogt, T.; Shapiro, S. M. *Solid State Commun.* **2000**, *115*, 217.
- (4) Homes, C.; Vogt, T.; Shapiro, S.; Wakimoto, S.; Ramirez, A. *Science* **2001**, *293*, 673.
- (5) Subramanian, M. A.; Sleight, A. W. *Solid State Sci.* **2002**, *4*, 347.
- (6) Byeon, S.-H.; Lufaso, M. W.; Parise, J. B.; Woodward, P. M.; Hansen, T. *Chem. Mater.* **2003**, *15*, 3798.
- (7) Byeon, S.-H.; Lee, S.-S.; Parise, J. B.; Woodward, P. M.; Hur, N. H. *Chem. Mater.* **2004**, *16*, 3697.
- (8) Byeon, S.-H.; Lee, S.-S.; Parise, J. B.; Woodward, P. M.; Hur, N. H. *Chem. Mater.* **2005**, *17*, 3552.
- (9) Byeon, S.-H.; Lee, S.-S.; Parise, J. B.; Woodward, P. M. *Chem. Mater.* **2006**, *18*, 3873.

^{*} To whom correspondence should be addressed. Email: zjwu@ ciac.jl.cn. Fax: +86-431-85698041.

[†] Changchun Institute of Applied Chemistry.

[‡] Graduate School.

arrangements over the octahedral sites.¹⁰ Therefore, both the A-site cation order and the rock-salt B-site order have a great influence on the properties of $AA'_{3}B_{2}B'_{2}O_{12}$. Through the study of $AA'_{3}B_{2}B'_{2}O_{12}$, where the A- and B-site are well ordered, it may be possible to study the inhibition of the electron delocalization that led to either Pauli paramagnetism or double-exchange ferromagnetism, while, at the same time, reducing the strength of the superexchange interactions on the octahedral sublattice, thereby enabling a direct study of the A' -O-B superexchange interactions.

 $CaCu₃Cr₄O₁₂$ was synthesized at a pressure of 60 kbar by Subramanian and co-workers.¹¹ Its crystal structure was determined by X-ray powder diffraction. The compound is cubic with space group $Im\overline{3}^{11}$ and isostructural with CaCu₃- Mn_4O_{12} .¹ Magnetic and electrical measurements show that it is a Pauli-paramagnetic metal.¹¹ This is different from $CaCu₃Mn₄O₁₂$, which is a ferrimagnetic insulator.¹ According to bond valence sums (BVS), the $Cu-O$ and $Cr-O$ bond distances give fractional valences of copper 2.45 and chromium 3.66.11 This indicates that the valence degeneracy results in metallic properties and a loss of a local moment for copper and chromium. Recently, theoretical study was conducted on $CaCu₃Cr₄O₁₂$ by the use of the augmented spherical wave (ASW) method within the local spin-density approximation $(LSDA).¹²$ The calculation was performed under both nonspin polarization (NSP) and spin polarization (SP) cases. The results show that the SP ferrimagnetic configuration is more stable compared with the NSP case, contrary to the experimental observation that $CaCu₃Cr₄O₁₂$ is Pauli paramagnetic.¹¹ The calculated magnetic moments in CaCu₃Cr₄O₁₂ are chromium 1.41, copper -0.16 , oxygen 0.01, and total 4.77 $\mu_{\rm B}$.¹²

On the other hand, $CaCu₃Cr₂Sb₂O₁₂$ was synthesized at 10 GPa and 1100 C .⁸ The space group *Pn*3 is obtained by X-ray powder diffraction, which is different from $Im\overline{3}$ of its parent compound, $CaCu₃Cr₄O₁₂$.¹¹ The measured electrical conductivity shows that $CaCu₃Cr₂Sb₂O₁₂$ is an insulator.⁸ By analyzing the temperature dependence of field-cooled magnetization and zero-field-cooled magnetization of CaCu₃Cr₂- $Sb₂O₁₂$ at different magnetic fields, it was found that there exists a ferrimagnetic transition near 160 K.⁸ The effective magnetic moment is determined to be ∼1.4 μ _B at 5 K. This indicates that an interaction between A-site Cu(II) and B-site Cr(III) cations is antiferromagnetic and induces the net spontaneous magnetic moment.⁸ The effective magnetic moment is significantly smaller than the expected value of $3 \mu_{\rm B}$, estimated assuming an antiparallel alignment of the spins of Cu(II) and Cr(III), which may be due to the spin canting as observed in $CuCr₂O₄$.¹³ In addition, it is also

(13) McGuire, T. R.; Howard, L. N.; Smart, J. D. *Ceram. Age* **1952**, *60*, 22.

interesting to note that among synthesized $AA'_{3}B_{2}B'_{2}O_{12}$ compounds,⁶⁻⁹ only CaCu₃Cr₂Sb₂O₁₂ and CaCu₃Ga₂M₂O₁₂ $(M = Sb, Ta)^6$ show simultaneous cation ordering on both A- and B-sites in an $a^+a^+a^+$ perovskite. We are unaware of any theoretical study on $CaCu₃Cr₂Sb₂O₁₂$.

In this article, we present a comprehensive study on the magnetic and electronic properties of $CaCu₃Cr₄O₁₂$ and $CaCu₃Cr₂Sb₂O₁₂$ by first-principles density functional calculation. The doping of nonmagnetic Sb^{5+} both dilutes the magnetic ion chromium and induces valence states of chromium from Cr^{4+} in CaCu₃Cr₄O₁₂ to Cr^{3+} in CaCu₃Cr₂- $Sb₂O₁₂$. Thus, it is interesting to investigate the property change upon the doping of Sb^{5+} . In this aspect, a hypothetical structure $CaCu₃Cr₂Sn₂O₁₂$, which is assumed to be isostructural with $CaCu₃Cr₂Sb₂O₁₂$, was also studied. In $CaCu₃Cr₂$ - $Sn₂O₁₂$, the doping of nonmagnetic $Sn⁴⁺$ makes chromium in the 4+ state, as in $CaCu₃Cr₄O₁₂$.

II. Crystal Structures and Computational Method

A. Structure. The crystal structures of $CaCu₃Cr₄O₁₂$ and $CaCu₃$ $Cr_2Sb_2O_{12}$ are shown in parts a and d of Figure 1. In CaCu₃Cr₄O₁₂, although all of the Cr-O bond distances are the same (1.926 Å) in $CrO₆$ octahedra, the O-Cr-O angles are 89.8 and 90.2, instead of 90° in an ideal octahedron. Thus, the CrO₆ octahedra are distorted from the ideal octahedra with O_h to $S₆$ symmetry. Distortion is also observed for the $CuO₄$ unit. The symmetry of $CuO₄$ is lowered from an ideal planar square with *D*⁴*^h* symmetry to a planar rectangular shape with the pseudo- D_{4h} symmetry. Similar to CaCu₃- Mn_4O_{12} ,^{14,15} the Cu²⁺, but not the Cr⁴⁺ (and Mn⁴⁺ in CaCu₃Mn₄O₁₂), ion is expected to be the Jahn-Teller ion. The Jahn-Teller ion $Cu²⁺$ leads to an oxygen sublattice that corresponds to a tilted 3D network of $CrO₆$ octahedra. The considerable size mismatch and difference in the bonding requirements for Ca^{2+} and Cu^{2+} lead to the deviation of the Cr-O-Cr bond angle (140.6° in CaCu₃Cr₄O₁₂) from an ideal 180° by the tilting of CrO_6 (part c of Figure 1). The space group of $CaCu₃Cr₄O₁₂$ is $Im3¹¹$. The Cu²⁺ ion at the 6b site
has mum symmetry, whereas the chronium ion at the 8c site has has *mmm* symmetry, whereas the chromium ion at the 8c site has $\overline{3}$ symmetry.

For CaCu₃Cr₂Sb₂O₁₂, the space group changes from *Im*3 (CaCu₃- Cr_4O_{12}) to *Pn*3. The symmetry lowering arises from the replacement of 50% chromium (in $CaCu₃Cr₄O₁₂$) by $Sb⁵⁺$ in an ordered manner (part f of Figure 1).16 This is consistent with an ordered perovskite structure in an $a^+a^+a^+$ Glazer tilt system.¹⁷⁻¹⁹ The Cu²⁺ at the 6d position and the Cr^{3+} at the 4c position have 222 and 3 symmetries, respectively. Similar distortion for $CrO₆$ and $CuO₄$ units are also observed in $CaCu₃Cr₂Sb₂O₁₂$. The tilting of $CrO₆$ and $SbO₆$ gives the $Cr-O-Sb$ bond angle of 139.5 \degree (part f of Figure 1).

B. Methodology. In the present work, the geometry optimization was performed within the CASTEP code.²⁰ The Vanderbilt ultrasoft pseudopotential²¹ was used with the cutoff energy of 340 eV. The

-
- (14) Weht, R.; Pickett, W. E. *Phys. Re*V*. B* **²⁰⁰¹**, *⁶⁵*, 014415. (15) Liu, X. J.; Xiang, H. P.; Cai, P.; Hao, X. F.; Wu, Z. J.; Meng, J. *J. Mater. Chem*. **2006**, *16*, 4243.
- (16) Howard, C. J.; Kennedy, B. J.; Woodward, P. M. *Acta Crystallogr. B* **2003**, *59*, 463.
- (17) Glazer, A. M. *Acta Crystallogr. B* **1972**, *28*, 3384.
- (18) Woodward, P. M. *J. Appl. Crystallogr.* **1997**, *30*, 206.
- (19) Aleksandrov, K. S.; Misjul, S. V. *So*V*. Phys. Crystallogr.* **¹⁹⁸¹**, *²⁶*, 612.
- (20) Segall, M. D.; Lindan, P. L. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. *J. Phys. Condensed Matter* **2002**, *14*, 2717.
- (21) Vanderbilt, D. *Phys. Re*V*. B* **¹⁹⁹⁰**, *⁴¹*, 7892.

⁽¹⁰⁾ Bonnenberg, D.; Boyd, E. L.; Calhoun, B. A.; Folen, V. J.; Grpäer, W.; Greifer, A. P.; Kriessman, C. J.; Lefever, R. A.; McGuire, T. R.; Paulus, M.; Stauss, G. H.; Vautier, R.; Wijin, H. P. J. In *Landolt*-*Bo¨rnstein: Numerical Data and Functional Relationships in Science and Technology*; Hellwege, K. H., Ed.; l New Serien, Group III; Springer-Verlag: Berlin, 1970; Vol. 4b.

⁽¹¹⁾ Subramanian, M. A.; Marshall, W. J.; Calvarese, T. G.; Sleight, A. W. *J. Phys. Chem. Solids* **2003**, *64*, 1569.

⁽¹²⁾ Matar, S. F.; Subramanian, M. A. *Mater. Lett.* **2004**, *58*, 746.

Figure 1. (Color online) Crystal structures of (a) CaCu₃Cr₄O₁₂ and (d) CaCu₃Cr₂Sb₂O₁₂. (b) and (e) show the CuO₄ square plane where copper is not shown. (c) and (f) show the octrahedra of $CrO₆$ and $SbO₆$.

exchange and correlation functionals were treated by the generalized gradient approximation in the formulation of Perdew, Burke, and Ernzerhof (GGA-PBE).²² The unit cell containing two formula units was fully relaxed, until the self-consistent field convergence per atom, tolerances for total energy, root-mean-square (rms) displacement of atoms, rms force on atoms, and rms stress tensor were less than 1.0×10^{-6} eV, 1.0×10^{-5} eV, 0.001 Å, 0.03 eV/Å, and 0.05 GPa, respectively. The calculations of magnetic and electronic propeties were performed using *WIEN2K* program.23,24 Infinite lattice systems are modeled using periodic boundary conditions. Therefore, it is ideally suitable for calculations on periodic systems. This program is based on the density functional theory and uses the full-potential linearized augmented plane wave (FPLAPW) method with the dual basis set. In the (L) APW method, the space is divided into atomic spheres and the interstitial region. Then the electronic states are classified as the core states, which are fully contained in the atomic spheres and the valence states. The valence states are expanded using the basis functions. Each of the basis functions has the form of the plane wave in the interstitial region, which is an atomic-like function, as in the atomic spheres. To make the treatment of two valence functions with the same angular momenta (such as 3p and 4p functions of chromium) possible, the so-called local orbitals are added to the basis functions. In our calculation, GGA-PBE was used for the exchange correlation potential.²² In CaCu₃Cr₄O₁₂, the muffin-tin radii (R_{MT}) is considered to be equal to 2.41, 1.91, 1.92, and 1.70 bohr for calcium, copper,

chromium, and oxygen, respectively. In $CaCu₃Cr₂Sb₂O₁₂$, the *R*MT are 2.42, 1.96, 1.93, 1.92, and 1.70 bohr for calcium, copper, chromium, antimony, and oxygen, respectively. The planewave expansion cutoffs are 7.0 for expanding the wave function (RKMAX) and 14 for expanding the densities and potentials (GMAX) in both compounds. Because the total energy of the ground-state and the magnetic moment is sensitive to the number of k-points used in calculation, we calculated the total energy and magnetic moments with the k-points 200, 300, 400, 500, 600, 800, and 1000. The results suggest that when the k-point is set to be 800 and 500 for $CaCu₃Cr₄O₁₂$ and $CaCu₃Cr₂Sp₂O₁₂$, respectively, the total energy is the lowest, whereas the magnetic moment does not change much from 200 to 1000 for the two compounds. So in this study, we use the 800 and 500 k-point for $CaCu₃Cr₄O₁₂$ and $CaCu₃Cr₂Sb₂O₁₂$ in the complete Brillouin zone, and the Brillouin zone integration is carried out with a modified tetrahedron method.25 The self-consistent calculations were considered to be converged when the energy convergence is less than 10^{-5} Ry.

III. Results and Discussion

A. CaCu₃Cr₄O₁₂. The geometry optimization was performed on CaCu₃Cr₄O₁₂ under both NSP and SP cases. From Table 1, it can be seen that the total energy (E_{tot}) under SP is lower than that under NSP by 1623.6 meV. This result is in agreement with the previous theoretical study that the magnetic configuration is more stable with respect to NSP one.12 Therefore, only the results from SP are given below.

The calculated magnetic moments are chromium: 1.70, copper: -0.47 , oxygen: -0.09 , and total net magnetic

⁽²²⁾ Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys. Re*V*. Lett.* **¹⁹⁹⁶**, *⁷⁷*, 3865.

⁽²³⁾ Schwarz, K.; Blaha, P. *Comput. Mater. Sci.* **2003**, *28*, 259.

⁽²⁴⁾ Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J. *Computer code WIEN2K*, *An augmented plane wa*V*es*+*local orbitals program for calculating crystal properties*, revised edition 2001; Vienna University of Technology: Vienna, Austria, 2003. (25) Blochl, P. E. Phys. Rev. B 1994, 50, 17953.

Table 1. Calculated Total Energy Per Formula Unit (f.u.) *E*tot (eV/f.u.) and Energy Differences ∆*E* (meV/f.u.) between Non- (NSP) and Spin Polarization (SP) Cases, and Magnetic Moment μ_B (Bohr Magneton) of CaCu₃Cr₄O₁₂ and CaCu₃Cr₂Sb₂O₁₂

		E_{tot} (eV/f.u.)			$\mu_{\rm B}$			
		NSP	SP	ΔE (meV/f.u.)	Cu	Сr		total
$CaCu3Cr4O12$	this work theor ^{a}	$-20\,203.0776$	$-20\,204.7012$	1623.6	-0.47 -0.16	1.70 1.41	-0.09 -0.01	5.0 4.77
$CaCu3Cr2Sb2O12$	this work exp ^b	$-15.569.5582$	-15572.6017	3043.5	-0.5	2.25	-0.05	3.0 1.4

^a Ref 12, theoretical study by ASW within LSDA. *^b* Ref 8.

moment: 5.0 μ _B (Table 1). These values are slightly larger than the previous theoretical values chromium: 1.41; copper: -0.16 ; oxygen: -0.01 , and total: $4.77 \mu_B$.¹² Compared
with the ideal spin magnetic moments of 2 μ_B for $Cr^{4+}(S=$ with the ideal spin magnetic moments of 2 μ _B for Cr⁴⁺ (*S* = 1) and 1 μ_B for Cu²⁺ (S = $\frac{1}{2}$), the calculated values are
smaller. The calculated spin magnetic moments indicate that smaller. The calculated spin magnetic moments indicate that in $CaCu₃Cr₄O₁₂$, Cu-Cr is antiferromagnetically coupled, whereas Cu-Cu and Cr-Cr are ferromagnetically coupled. Thus, similar to the experimental observation in $CaCu₃$ - Mn_4O_{12} ,^{1,14,15} CaCu₃Cr₄O₁₂ is a ferrimagnetic compound, in agreement with the previous theoretical study.¹² Nonetheless, because $CaCu₃Cr₄O₁₂$ is reported to be a Pauli-paramagnetic metal by experiment, 11 more research is necessary to solve the discrepancy.

The energy band structure of $CaCu₃Cr₄O₁₂$ is shown in part a of Figure 2. Metallic behavior is observed for the spin-up channel, whereas semiconductoring behavior is seen for the spin-down channel with a direct energy gap of 0.137 eV located at the H point, indicating that $CaCu₃$ - Cr_4O_{12} is half-metallic. This is different from $CaCu_3Mn_4O_{12}$, which is an insulator.^{1,14,15} From part a Figure 2, we also noted that for the spin-up channel, chromium 3d (t_{2g}) electrons occupy mainly around the Fermi energy level and are rather dispersive. This indicates that chromium 3d electrons are itinerant. For copper, the 3d electrons in d_z ², $d_{x^2-y^2}$, d_{xz} , and d_{yz} orbitals occupy below -0.8 eV. The three
empty bands in the energy region from 0.8 to 1.2 eV belong empty bands in the energy region from 0.8 to 1.2 eV belong to the unoccupied copper d*xy* state. For the spin-down channel, the copper d*xy* orbital has three bands at the valence band maximum. The 12 empty bands in the energy region from 0.2 to 2.0 eV are from the unoccupied chromium t_{2g} state.

The total density of states (TDOS) in part a of Figure 3 show that at the Fermi level (E_F) the thermally induced current is 100% spin polarized, which is the unique character for the half metallic compound. From the partial DOS (PDOS) shown in part a of Figure 3, it is seen that at the spin-up channel, the bands at E_F are mainly from the hybridization between chromium t_{2g} with oxygen p_x and p_y orbitals. For the chromium site, the distorted $CrO₆$ octahedra decompose the five 3d orbitals into a nondegenerate $3z^2-r^2$, doubly degenerate $\{x^2-y^2, xy\}$, and doubly degener-
ate $\{xy, yz\}$. This is the same as in $CaCuMn_1O_2$ 14,15 . The ate $\{xz, yz\}$. This is the same as in CaCu₃Mn₄O₁₂.^{14,15} The PDOS (part a of Figure 3) show that the 3d orbitals are occupied mainly in the spin-up channel, whereas at the spindown channel, they are nearly unoccupied. The four orbitals $\{xz, yz\}$ and $\{xy, x^2-y^2\}$ are nearly degenerate. The nonveloped a critical is small population on the d*^z* ² orbital is small.

For copper, at the spin-down channel, the 3d orbitals dominate the top of the valence band and hybridize with oxygen p_x and p_y orbitals. This is similar to the situation in $CaCu₃Mn₄O₁₂$.^{14,15} The copper d_{xz} and d_{yz} orbitals are located nearly at the same energy region, indicating that they are degenerate. The remaining three orbitals are nondegenerate. This demonstrates that the distorted $CuO₄$ unit has the pseudo- D_{4h} symmetry. The d_z^2 , $d_{x^2-y^2}$, d_{xz} , and d_{yz} orbitals lie in the energy region from -3.0 to -0.8 eV and are almost completely occupied in both the spin-up channel and the spindown channel, whereas the d*xy* state is located in an energy region just below the Fermi energy level and occupied only in the spin-down channel. In the CuO₄ unit, copper d_{xy} and oxygen p orbitals form the $d-p\sigma$ antibonding interactions, similar to the $d_{x^2-y^2}$ orbital observed in the layered cuprates. In addition, it can be seen that near the E_F , copper d_{xy} and chromium 3d orbitals form an antiferromagnetic coupling, in agreement with the calculated spin magnetic moments (Table 1).

B. CaCu₃Cr₂Sb₂O₁₂. As in CaCu₃Cr₄O₁₂, the crystal structure of $CaCu₃Cr₂Sb₂O₁₂$ was optimized under both NSP and SP cases. From Table 1, it can be seen that the total energy (E_{tot}) under SP is lower than that under NSP by 3043.5 meV. Therefore, only the results under SP are presented.

Similar to $CaCu₃Cr₄O₁₂$, the calculated spin magnetic moments (Table 1) show that Cr-Cu is antiferromanetically coupled, whereas Cu-Cu and Cr-Cr are ferromagnetically coupled. The net magnetic moment is $3.0 \mu_{\rm B}$, indicating that $CaCu₃Cr₂Sb₂O₁₂$ is a ferrimagnetic compound. The calculated net magnetic moment of 3.0 is in agreement with the expected value of 3.0 μ B, estimated from an antiparallel alignment of the spins of Cu(II) and Cr(III), but larger than the experimentally determined effective magnetic moment of ∼1.4 μ _B.⁸ This is probably because the canted spins induce a spontaneous magnetization and lead to a small value in experiment.8 Because it is difficult to determine the spin canting angle by the theoretical method, future experimental study by neutron diffraction is necessary. The calculated magnetic moments are 2.25 and $-0.50 \mu_{\rm B}$ for chromium and copper, respectively, also smaller than the ideal values of 3 μ_B for Cr³⁺ ($S = \frac{3}{2}$) and $1 \mu_B$ for Cu²⁺ ($S = \frac{1}{2}$). Nonetheless, our calculation confirmed that $CaCu₃Cr₂Sb₂O₁₂$ is a ferrimagnetic compound, in agreement with the experimental observation.8

From the band structures shown in part b of Figure 2, it is seen that the calculated band gaps are 0.136 for the spinup channel and 0.989 eV for the spin-down channel. Both

Figure 2. (Color online) Band structures near the Fermi energy for spin-up (upper panel) and spin-down (lower panel) channels, (a) CaCu₃Cr₄O₁₂, (b) $CaCu_3Cr_2Sb_2O_{12}$. Copper 3d bands are plotted by the big dots. Cu_3O' indicates d_z^2 , $d_x^2-y^2$, d_{yz} , and d_{xz} in $CaCu_3Cr_4O_{12}$; d_z^2 , $d_x^2-y^2$, d_{xy} , and d_{yz} in CaCu₃-
Cr-Sb-Que The energy region fro $Cr_2Sb_2O_{12}$. The energy region from the specific orbitals is labeled on the outside of the figure. Chromium 3d orbitals are roughly classified as t_{2g} and e_g. The energy bands of oxygen overlap with those of the metal atoms. The energy at zero indicates the Fermi energy level.

are indirect. This result is in agreement with the experimental result that the compound is nonmetallic.⁸ For the spin-up channel, the valence bands from -1.1 to -0.2 eV are from the hybridization of chromium t_{2g} with oxygen p orbitals (part b of Figure 2 and part b of Figure 3). The copper 3d electrons in d_{*z*}, d_{*x*}, d_{*xy*}, and d_{yz} orbitals mainly occupy below -1.3
eV. There are six empty bands in the energy region from eV. There are six empty bands in the energy region from 0.0 to 0.6 eV, corresponding to the unoccupied copper d*xz* state. The four empty bands in the energy region from 0.9 to 2.0 eV are from the unoccupied chromium e_{g} state hybridizing with oxygen p orbitals. For the spin-down channel, the bands from -0.8 to -0.6 eV are from the hybridization of copper dxz with oxygen p orbitals. The four empty bands from 0.4 to 2.0 eV belong to the unoccupied chromium t_{2g} state. On the other hand, from part b of Figure 3, it is evident that the spin-up and down channels are not symmetric, displaying the character of ferrimagnetic behavior. Compared with $CaCu₃Mn₄O₁₂$ (refs 14 and 15) and CaCu3Cr4O12, where copper 3d (d*xy*) orbitals are at the valence band maximum, for $CaCu₃Cr₂Sb₂O₁₂$, the copper 3d (d*xz*) orbitals shift away from the Fermi energy level to the lower energy and tend to be localized. The PDOS of copper 3d orbitals show that d_z^2 , $d_x^2 - y^2$, d_{xy} , and d_{yz} orbitals, which are nearly completely occupied both in the spin-up channel

Figure 3. Total and partial density of states for (a) CaCu₃Cr₄O₁₂, (b) CaCu₃Cr₂Sb₂O₁₂. The energy at zero indicates the Fermi energy level. **9580 Inorganic Chemistry,** Vol. 46, No. 23, 2007

Figure 4. Schematic representations of the electronic bands around the Fermi energy level for (a) CaCu₃Cr₄O₁₂, (b) CaCu₃Mn₄O₁₂, and (c) CaCu₃Cr₂- $Sb₂O₁₂$.

and in the spin-down channel, lie in the energy region from -3.0 to -1.3 eV. The d_{xz} state is in a higher energy region from -0.8 to -0.6 eV, and occupied only in the spin-down channel. This result is in agreement with the negative effective magnetic moment $-0.50 \mu_B$ of copper. The chromium 3d orbitals occupy mainly in the spin-up channel. The chromium $d_x^2 - y^2$, d_{xy} , d_{xz} , and d_{yz} orbitals from the distorted $CrO₆$ octahedron are strongly mixed or degenerate and localized compared with those in $CaCu₃Cr₄O₁₂$. In the energy region from -0.8 to -0.6 eV, the copper d_{xz} and chromium $d_{xz/yz}$, d_{xy/x^2-y^2} orbitals form an antiferromagetic superexchange interaction through the oxygen ion.

C. Magnetic Coupling and Electronic Properties. The magnetic coupling in $CaCu₃Cr₄O₁₂$ is quite complex to unravel due to the two types of magnetic ions and local sites with low symmetry. It was previous observed that only $Cu-Cu$ antiferromagnetic coupling exists in $CaCu₃Ti₄O₁₂$ because titanium is in d^0 configuration.^{26,27} The exchange coupling is through the TiO₆ octahedron.^{26,27} Later, the magnetic coupling in the isostructural compound CaCu₃- Mn_4O_{12} was investigated.^{14,15} It was found that in CaCu₃- Mn_4O_{12} , the Cu-Cu geometry is the same as that in $CaCu₃Ti₄O₁₂$, and the Cu-Cu coupling is through the MnO₆ octahedron. However, contrary to Ti^{4+} with d^0 configuration in CaCu₃Ti₄O₁₂, Mn⁴⁺ with d³ configuration in CaCu₃Mn₄O₁₂ provides different magnetic coupling in that the Mn-Cu is antiferromagnetic and Cu-Cu is ferromagnetic. Because of the reduction of the Mn-O-Mn bond angle from 180 to 142°, the parallel alignment of the manganese spin is observed, that is, the coupling of Mn-Mn is ferromagnetic. Because CaCu₃Cr₄O₁₂ is isostructural with CaCu₃Mn₄O₁₂, the interaction of Cu–Cu in CaCu₃Cr₄O₁₂ is through the CrO₆ octahedron, similar to that in $CaCu₃Mn₄O₁₂$ through the $MnO₆$ octahedron. Moreover, the electronic configuration of Cr^{4+} (d²) is similar to that of Mn^{4+} (d³), in which 3d electrons are less than half filled. Therefore, the $CrO₆$ octahedron plays the same role as MnO_6 . That is, in CaCu₃Cr₄O₁₂, Cu-Cr coupling is antiferromagnetic, whereas Cu-Cu is ferromagnetic. According to Goodenough-Kanamori-Anderson rules,

 Cr^{4+} -O-Cr⁴⁺ (d²-d²) coupling with an angle of 180° is
antiferromagnetic (viz. CaCrO₂, Cr^{4+})²⁸ When the angle is antiferromagnetic (viz. $CaCrO₃, Cr⁴⁺)²⁸$ When the angle is reduced to the range of 125∼150°, a ferromagnetic coupling is expected.28 This is in agreement with our conclusion, that is, the Cr-O-Cr angle is 140.6° and Cr-Cr is ferromagnetically coupled. The above discussion suggests that, for $CaCu₃B₄O₁₂$ (B = 3d transition metal), the electronic configuration of B ions and the $B-O-B$ angle play important roles in the magnetic couplings of Cu-B, Cu-Cu, and B-B. Our recent prediction on $CaCu₃Fe₄O₁₂$ also supported the above conclusion.²⁹ In CaCu₃Fe₄O₁₂, iron is in a 4+ state, and the Fe $-O-$ Fe angle is 139.1 \degree . The coupling of Cu-Fe is antiferromagnetic, whereas that of $Cu-Cu$ and $Fe-Fe$ is ferromagnetic.29

Parts a and b of Figure 4 show the schematic representation of the electronic bands around the Fermi level for CaCu₃- Cr_4O_{12} and $CaCu_3Mn_4O_{12}$. In insulating $CaCu_3Mn_4O_{12}$, the manganese t_{2g} band is half filled (d^3), and the conductivity can be thermally activated. For $CaCu₃Cr₄O₁₂$, chromium t_{2g} has only two electrons (d^2) less than half filled. This makes chromium 3d electrons delocalized, tends to strengthen ferromagnetic interaction of Cr-Cr through oxygen, and results in the Cr-O-Cr network being conductive. This can be observed from the electronic density map of the (010) plane of the spin-up channel for $CaCu₃Cr₄O₁₂$ (part a of Figure 5). Thus, metallic behavior is expected to occur for one of the spin channels and is indeed observed in the band structures (the spin-up channel in this study, part a of Figure 2). Therefore, for $CaCu₃Cr₄O₁₂$, the electronic configuration of Cr^{4+} (d²) with t_{2g} less than half filled (d³) will strengthen Cr-Cr ferromagnetic interaction.

Similar to $CaCu₃Cr₄O₁₂$, the magnetic coupling in $CaCu₃$ - $Cr₂Sb₂O₁₂$ is also quite complex. In the compound, the magnetic ions Cr^{3+} are diluted by nonmagnetic ion Sb^{5+} in an ordered manner. Hence, Cr-Cr superexchange coupling in the octahedral network is reduced significantly compared with that in $CaCu₃Cr₄O₁₂$. The interaction of Cu-Cu is through the CrO_6 (Cr^{3+} , d^3) octahedron. The Cr-Cu anti-

⁽²⁶⁾ Lacroic, C. *J. Phys. C.* **1980**, *13*, 5125.

⁽²⁷⁾ Collombm, A.; Samaras, D.; Bochu, B.; Joubert, J. C. *Phys. Status Solidi A* **1977**, *41*, 459.

⁽²⁸⁾ Goodenough, J. *Magnetism and the Chemical Bond*; Wiley-Interscience: New York, 1996.

⁽²⁹⁾ Xiang, H. P.; Liu, X. J.; Zhao, E. J.; Meng, J.; Wu, Z. J.; *Appl. Phys. Lett*. **2007**, *91*, 011903.

Figure 5. (Color online) Electronic density maps of the (010) plane of spin-up for (a) CaCu₃Cr₄O₁₂, (b) CaCu₃Cr₂Sb₂O₁₂, and (c) CaCu₃Cr₂Sn₂O₁₂, respectively.

ferromagnetic coupling and Cu-Cu ferromagnetic coupling exist in $CaCu₃Cr₂Sb₂O₁₂$. Parts b and c of Figure 4 show the schematic representation of the electronic bands around the Fermi level for $CaCu₃Mn₄O₁₂$ and $CaCu₃Cr₂Sb₂O₁₂$. In $CaCu₃Cr₂Sb₂O₁₂$, the Cr³⁺ 3d has three electrons with t_{2g} half filled (t_{2g}^3) , and there is a band gap around the Fermi level as that in $CaCu₃Mn₄O₁₂$ (Mn⁴⁺ t_{2g}³). The larger band gap of $CaCu₃Cr₂Sb₂O₁₂$ (0.136 eV) compared with that of CaCu₃- Mn_4O_{12} (0.09 eV)¹⁴ indicates that, the doping of nonmagnetic ion Sb^{5+} , which reduces the Cr-Cr ferromagnetic coupling significantly, might be responsible for the weakening of the conductivity in $CaCu₃Cr₂Sb₂O₁₂$. Therefore, for $CaCu₃B₄O₁₂$ $(B = 3d$ transition metal), the conductivity of CaCu₃B₄O₁₂ could be reduced by the doping of nonmagnetic ion B′ at the B site in an ordered manner.

From CaCu₃Cr₄O₁₂ to CaCu₃Cr₂Sb₂O₁₂, the doping of nonmagnetic ion Sb^{5+} induces the valence state of chromium from $+4$ to $+3$. Therefore, to get further insight into the influence of the valence states of chromium and nonmagnetic ion $Sb⁵⁺$ on the physical properties, we studied the electronic structure of a hypothetical compound, $CaCu₃Cr₂Sn₂O₁₂$, by assuming the structure of $CaCu₃Cr₂Sb₂O₁₂$ through replacing the Sb^{5+} with Sn^{4+} . In CaCu₃Cr₂Sn₂O₁₂, chromium has the same valence state, $+4$, as in the CaCu₃Cr₄O₁₂, but different from $+3$ in CaCu₃Cr₂Sb₂O₁₂. Moreover, Sn⁴⁺ is also a nonmagnetic ion. Our calculated results show that, similar to CaCu₃Cr₄O₁₂ and CaCu₃Cr₂Sb₂O₁₂, CaCu₃Cr₂Sn₂O₁₂ is also a ferrimagnetic compound, and the interaction between copper and chromium is antiferromagnetic. The band structures suggest that $CaCu₃Cr₂Sn₂O₁₂$ is a semiconductor with a quite-small thermal gap of 0.008 eV, much smaller than that of $CaCu₃Cr₂Sb₂O₁₂$ (0.136 eV). This might be due to the fact that the Cr⁴⁺ t_{2g} orbital in CaCu₃Cr₂Sn₂O₁₂ is occupied by only two electrons (less than half filled compared with half-filled Cr^{3+} t_{2g}³ in CaCu₃Cr₂Sb₂O₁₂), thus making the electrons in $CaCu₃Cr₂Sn₂O₁₂$ less localized and the interaction between chromium and oxygen stronger. This is demonstrated by the electronic density maps of the (010) plane of the spin-up channel for $CaCu₃Cr₂Sb₂O₁₂$ and $CaCu₃$ - $Cr_2Sn_2O_{12}$, shown in parts b and c of Figure 5. It is seen that the hybridized interaction between chromium and oxygen in CaCu₃Cr₂Sn₂O₁₂ is stronger than that in CaCu₃Cr₂Sb₂O₁₂. On the other hand, as in $CaCu₃Cr₄O₁₂$, chromium has valence state of $+4$ in CaCu₃Cr₂Sn₂O₁₂. From parts a and c of Figure 5, it is seen that, compared with $CaCu₃Cr₄O₁₂$, the nonmagnetic Sn^{4+} ion reduces the Cr-O-Cr superexchange interaction in $CaCu₃Cr₂Sn₂O₁₂$, thus weakening the conductivity of the Cr-O-Cr network, as encountered in $CaCu₃Cr₂Sb₂O₁₂$. Therefore, it is clear that the electronic configuration of $Cr³⁺$ (t_{2g}^3) and the doping of nonmagnetic ion Sb⁵⁺ have a great influence on the conducting behavior of $CaCu₃Cr₂Sb₂O₁₂$.

Finally, we compare $CaCu₃Cr₂Sb₂O₁₂$ with the other $CaCu₃B₂B'₂O₁₂$ compounds. Different from the $CaCu₃Cr₂$ - Sb_2O_{12} , both CaCu₃Cr₂Ru₂O₁₂ and CaCu₃Ga₂Ru₂O₁₂ crystallize in space group $Im\bar{3}$, where cations are disordered over the octahedral B site and show Pauli-paramagnetic metallic behavior.7,9 This may be due to the well-known broadening of the d band when going from the 3d to the 4d series. Moreover, the disorder of the octahedral B sites makes the electrons more delocalized. On the other hand, the pure paramagnetic behavior of $CaCu₃Ga₂M₂O₁₂$ (M = Sb, Ta) (with cation ordering on both A- and B-sites), 6 which, contrary to the antiferromagnetic $CaCu₃Ti₄O₁₂,^{26,27} suggests$ that the magnetic coupling within the A′ sublattice is strongly influenced by the electronic configuration of the B, B′ sublattice.

 $CaCu₃Cr₂Sb₂O₁₂$ shows simultaneous cation ordering on both A- and B-sites and has 50% magnetic ion Cr^{3+} and 50% nonmagnetic ion Sb^{5+} at the octahedral B sites. The ordered arrangement of the chromium and antimony and the

Magnetic and Electronic Properties

nonmagnetic ion Sb^{5+} simultaneously inhibits the electron delocalization that leads to either Pauli paramagnetism or double-exchange ferromagnetism, while at the same time reduces the strength of the Cr-Cr superexchange interactions. Thus, compound $CaCu₃Cr₂Sb₂O₁₂$ shows ferrimagnetic character, and the spontaneous magnetization is associated with the $Cu^{2+}-Cr^{3+}$ superexchange interaction. Therefore, the ordering arrangement of the octahedral chromium and antimony ions and the electronic configuration of Cr^{3+} (d³) play important roles in producing a ferrimagnetic insulating character of $CaCu₃Cr₂Sb₂O₁₂$.

IV. Conclusions

 $CaCu₃Cr₄O₁₂$ and $CaCu₃Cr₂Sb₂O₁₂$ were studied by the use of density functional theory. In $CaCu₃Cr₄O₁₂$, $CrO₆$, in which Cr^{4+} 3d orbitals have only two electrons (d^2) less than half filled $(d⁵)$, this provides a bridge for the exchange process of Cu-Cu and Cu-Cr, resulting in Cu-Cr antiferromagnetic and Cu-Cu ferromagnetic couplings. Because the angle of Cr-O-Cr, 140.6°, deviates from the ideal 180° significantly, Cr^4 - Cr^{4+} is ferromagnetically coupled. Moreover, chromium
3d electrons are delocalized, which makes the $Cr = O - Cr$ 3d electrons are delocalized, which makes the $Cr-O-Cr$ network conductive. Therefore, $CaCu₃Cr₄O₁₂$ shows ferrimagnetic and half-metallic properties. For $CaCu₃Cr₂Sb₂O₁₂$, Cr^{3+} 3d orbitals are occupied by three electrons (d^3), which are also less than half filled. Thus, similar to $CaCu₃Cr₄O₁₂$, Cu-Cr is antiferromagnetically coupled, whereas Cu-Cu is ferromagnetically coupled. However, as a result of the doping of nonmagnetic ion Sb^{5+} , the magnetic ions Cr^{3+} are diluted. Hence, $Cr^{3+} - Cr^{3+}$ ferromagnetic coupling is significantly reduced in comparison with that in $CaCu₃Cr₄O₁₂$. Moreover, Cr^{3+} with the t_{2g} orbitals half filled (t_{2g}^3) leads the chromium 3d electrons to be localized, which reduces further the interaction of $Cr^{3+}-Cr^{3+}$. In addition, the ordering arrangement of the octahedral chromium and antimony ions also prohibits the delocalization of electrons. Therefore, $CaCu₃Cr₂Sb₂O₁₂$ is a ferrimagnetic semiconductor with an energy gap of 0.136 eV. These results suggest that for $CaCu₃B₄O₁₂$ (B = 3d transition metal), the electronic configuration of B ions play an important role in tailoring the conducting properties and the magnetic couplings of Cu-B, Cu-Cu, and B-B. If B 3d orbtials are populated but less than half filled $(d^n, n \le 5)$, the coupling of Cu-B could be
antiferromagnetic, whereas those of Cu-Cu and B-B are antiferromagnetic, whereas those of Cu -Cu and $B-B$ are ferromagnetic. The doping of nonmagnetic ion B′ at B site in an ordered manner could weaken the conductivity of $CaCu₃B₄O₁₂$.

Acknowledgment. The authors thank the National Natural Science Foundation of China (NSFC) for financial support (Grants 20571073, 20331030, and 20601026).

IC070213Q